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S-1: Derivation of one-dimensional transport equation in macropores 

We here present the derivation of one-dimensional transport equation in macropores 

(Equation 2 in the main paper). We start with the general form of MPE transport equation, 

 �� ��� ���� + 
 ∙ �� = ����.   (1) 

Here, ci is the concentration of ion species i in the pores. pM is the porosity associated 

with macropores (the volume fraction of the pores contributing to mass transport 

pathways). �� is the cross-sectional area-averaged (solid and liquid phase) ion flux, 
including contributions from advection, dispersion, and electromigration. ��� is the molar 
flux averaged over the interfacial area between the electrode matrix and liquid phase. a is 

the specific interfacial area, defined as the surface area of the porous electrode per unit 

volume of the total electrode.  

In one-dimensional and binary electrolyte system, we can write transport equation 

for cations and anions as: 

 �� ����� + ���� ����� − �������
���� −	�� !",� �

$����$ = ��� 
(S2) 

 �� ��%�� + ���� ��%�� + ���%���
���� −	�� !",% �

$�%��$ = ��% 
(S3) 

Here usup is the superficial velocity. µ+ and µ-  are electrophoretic mobilities for cation and 

anions respectively. DBF, + and DBF, -  are the one-dimensional Burnett-Frind 

hydrodynamic dispersion coefficients which approximate the effects of longitudinal 

dispersion of ion species due to both mechanical spreading and molecular diffusion in 

porous media. We assume that D+ = D-  = D and DBF, + = DBF, - = DBF. VT is thermal 

voltage (VT = kT/e, k and T being Boltzmann constant and temperature). � is tortuosity of 
electrode material. 

In macropores, we have	�� =	�% = �. Adding Eq. S2 and S3, we cancel the 
eletromigration flux term and arrive at the following equation: 

 �� ���� + ���� ����−	�� !" �
$���$ = �2 ��� + �%� (S4) 
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The right-hand side of Equation S4 represents the molar ion flux through the interfacial 

area between electrode matrix and liquid phase. We can relate this ion flux to the local 

salt adsorption rate −	�( ��)*��� . Equations S4 then yields to the mass transport equation, 
 �� ���� + ���� ���� − �� !" �

$���$ = −	�( ���+��� . (S5) 

which is Equation 2 in the main paper. 

 

S-2: Expressions of salt adsorption and electrode surface charge density in Gouy-

Chapman-Stern electrical double layer model 

In the Gouy-Chapman-Stern model, the expressions for the local charge density on the 

electrode surface (in unit of moles per area) , is: 
 , = 4 �./ sinh	�12 ∆�6�77�   

(S6) 

where c. is the ion concentration in the bulk solution. / is the inverse of the Debye 
length. ∆�6�77 is the potential drop across electrical double layer.1 
 The expression for salt adsorption + in units of moles per electrode surface area is: 
 + = 8 :;< sinh$�=>∆�6�77� . 1  (S7) 

 

S-3: Detailed derivation of zero-dimensional ODE for volume-averaged model 

We here present detailed derivation of unsteady volume-averaged model. We start with 

the one-dimensional transport governing equation (Equation 3) in the main paper. 

 �� ���� + ���� ���� − �� !" �
$���$ = −�(? ���σ��� . (S8) 

As we defined in the main paper, the one-dimensional Burnett-Frind hydrodynamic 

dispersion coefficient DBF relates to longitudinal dispersivity parameter	AB and molecular 
diffusivity as  !" =	AB���� +  C77. Here Deff  is the effective molecular diffusivity.  

This diffusivity can be interpreted as the molecular diffusivity D corrected to account for 

tortuosity (and is here equal to the molecular diffusivity D divided by tortuosity). 

We perform volume integration over the entire cell �D on both sides: 
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 E �� ���� F�GH
+ E ���� ���� F� − E �� !" �$���$ F�GHGH

= E −	�(? ���σ��� F�
GH

.   

(S9)  

We define a cell average concentration as  

 ���D ��̅�� ≈ E �� ���� F�GH
 

 

(S10) 

We now substitute the expression for cell average concentration to Equation S9 and apply 

divergence theorem. The volume-integrated transport equation then becomes: 

���D ��̅�� + �����K( � − �� !" ���� K(�LM��
− 	�����K( � − �� !" ���� K(�L�� = −

?NDO  

  

(S11) 

To further simplify the equation, we approximate �̅ ≈ =$ ��D + �C� and  �:�PQ�� = :R%:HBS�$BR at 
cell inlet and approximate 

�:�PQM�� = :R%:HBS�$BR at the outlet of the domain as boundary 
conditions.  

 

Equation S11 then becomes: 

��C�� + 2T���D ��C − �D� = −
2?ND���DO 

(S12) 

We now arrive at Equation 11 presented in the main paper. 

 

S-4: Analytical solutions to ODEs of volume-averaged model 

We analytically solve the ODEs of volume-averaged model (Equation 12 in the main 

paper).  

 

UVW
VX		��C�� + 2T���D ��C − �D� = −

ND$4���(�D�C�DO$ �		�? < 1�
		��C�� + 2T���D ��C − �D� = −

2ND���DO																						�? = 1�
	

  

(S13) 
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Equation S13 is the general formulation of unsteady volume-averaged model and 

it applies to both advection-limited and dispersion limited regime. For the ODE in the 

regime of ? < 1, we group known parameters as:  
 

UVW
VX 		K = 	 2T���D																
B = 	−	 ND$	4�(���D�C�DO$								

	
  

(S14) 

The initial condition for this ODE is	�C = �D at t = 0. We then derive the solution using 

the integral factor method as: 

�C���	 = �D − [ \K$] �1 − ^%_�� + [\K] �	,					�	� < 8���C�DOND � (S15) 

We note that this solution is only valid for ? < 1. Therefore, Equation S15 is the solution 
to �C at the early charging phase, from � = 0 to �a = b�cGR:H"dH . 

In a similar manner, for ODE in the regime of ? = 1, we group the known 
parameters as: 

 

UW
X		K = 	 2T���D																			
	C = 	−	 2ND���DO												

	
  

(S16) 

The initial condition is �C�� = 	 �a�	from Equation S15 at � = 	 �a. The solution (using 
integral factor method) is then: 

�C��� = [fK] + g=�^%_�� + �D	,									�	� ≥ 8���C�DOND � (S17) 

where the parameter g= is determined by the initial condition.  Equations S15 and S17 are 
summarized in the text of the main paper. In advection-limited regime, the predictions of 

effluent concentrations by volume-averaged model are shown in Figure 2 in the main 

paper.  

S-5: Area-averaged model of flow-through electrode CDI system with constant 

voltage (CV) operation 
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As mentioned in the main text, the higher fidelity area-averaged model with modified 

Donnan approach and native charge can be modified to constant voltage (CV) operation. 

We here present the full set of equations for CV operations. 

 

Governing equations for mass transport and salt charge balance in macropores are 

respectively: 

 �� ���� + ���� ���� − �� !" �
$���$ = −�( �i�� 	 (S21) 

 ��� � ��� [� ����] = �( �j�� 	 (S22) 

 

Equation for charge balance and in the electrode and electrolyte matrix is: 

 2j + j�)��kC + jC = 0	.	    

(S23) 

To relate electrical charge qe to the micropore potential drop ∆�(: 
 ∆�( = jC Of(		    

(S24) 

Potentials relation in the system: 

 ∆�( + ∆�l + 	� = 	�CP�	 (S25) 

Equation S21 – S25 and boundary and initial conditions (see Figure 1b in the 

main paper) complete the formulation of area-averaged models for fteCDI cell with CV 

operations. The definitions of variables and parameters are the same as those in the main 

paper. We note that in CV simulations, the potential of electrode phase �C becomes a 
known value as �CP�. As a result, the full set of equations for CV conditions has one 
equation fewer than that of CC conditions (Equation 15 – 20 in the main paper). 

Figure S1(a) shows the effluent concentration of a fteCDI cell operating at 1.2V 

constant voltage with constant flow at a flow rate of 0.48 mL/min. The parameters used 

in CV simulations have the same values as those used in CC simulations in the main text. 

In CV operations, effluent concentration demonstrates different features than those of CC 
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charging. The effluent concentration quickly reaches a minima and then gradually returns 

to feed concentration level. The fast desalination at beginning was caused by high 

electrical current flux in the electrode matrix. As salt adsorption saturates, the salt 

concentration gradually increases.
2
 Figure S1(b) is the spatiotemporal plot of salt 

concentrations in a fteCDI cell (time and position along the 1D cell model in the 

ordinance and abscissa, respectively). This plot demonstrates the dynamic change of salt 

concentrations over time inside a fteCDI.  

 

Figure S1. (a) Simulated effluent concentration versus time and (b) spatiotemporal 

representation of in situ deionization dynamics of a fteCDI cell operated with CV 

charging at 1.2 V and with constant flow rate at 0.48 mL/min. These simulations are 

performed with the high fidelity area-averaged model with CV conditions. 

 

S-6：：：：Fitting parameter extraction from near-equilibrium experiments 

We used measured values of equilibrium adsorbed salt and transferred charge at constant 

voltage charging to estimate the model parameters. To this end, we applied external 

voltages of 0.4, 0.6, 0.8, and 1 V across the cell at fixed 0.48 mL/min flow rate for 0.5 h 

and discharged the cell at 0 V for 0.5 h. We calculate the adsorbed salt Γ m	and 
transferred charge Σ m	(both in units of moles per electrodes mass) as follows.3 
 

0

1
( )e

tot

Q c c dt
m

Γ = −∫ 	 (S23) 
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 1
( )ext leak

tot

I I dt
m

Σ = −∫  
(S24) 

where mtot is total (dry) mass of electrodes, Q is flow rate, ce is area-averaged effluent salt 

concentration, Iext is cell electric current, and Ileak is the leakage current (measured current 

at the end of charging phase, likely due to Faradaic reactions at the electrode surface).  

 We note that equilibrium data are governed only by double layer model, external 

voltage (or current), and influent concentration. Cell geometry, flow rate, and dispersion 

phenomena do not affect the equilibrium solutions. This means that equilibrium data is 

independent of AB. Thus, we will use effluent concentration data as well.  
 We first solved the set of equations S21-S25 for a variety of Cm, pm, and qnative 

values at steady state (infinite time) as a function of external voltage. We then minimized 

the sum of mean square error of adsorbed salt + and transferred charge n. All numerical 
simulations were performed with a commercially available finite element simulation 

software (COMSOL Multiphysics, 5.1, Burlington, USA) 

Figure S2 shows the measured values (from experiments) and the best fit line in 

units of milimoles. The estimated values are Cm = 120 F/cm
3
, pm= 0.1, and qnative = 100 

moles/m
3
. We subsequently used dynamic measurements of effluent salt concentration to 

determine AB at fixed Cm, pm, and qnative. To this end, we varied AB such that the temporal 
effluent salt concentration from the model matches that of experiments. Our final 

estimate is AB=10
-4 
m.  
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Figure S2. Experimentally measured and numerically simulated adsorbed salt and 

transferred charge. Gray lines are numerical simulation results with different sets of 

parameters. The red lines with diamond, round and square symbols are experimental data. 

The black line with star symbol is the best-fit simulation result. 
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S-7: Plot of cell potential over time during charging 

Figure S3 shows the cell potential over time during 50 mA constant current charging with 

flow rates at 2.5, 5.1, 7.7, 10.3 and 12.8 mL/min. The black dashed line serves as a visual 

guide to indicate the linear charging behavior of an ideal capacitor. As we mentioned in 

our main text (line 487), parasitic reactions during CDI charging provide current leakage 

paths, and therefore lower the rate of charge accumulation in cell. The voltage profiles 

below show that cell potential deviates from ideal capacitor charging around 150 s when 

the cell voltage reaches 0.7 V. We attribute this deviation to the charge loss associated 

with parasitic reactions such as the reduction of dissolved oxygen. 

  
Figure S3. Plot of cell potential over time during charging at 50 mA and with flow rates 

of 2.5, 5.1, 7.7, 10.3 and 12.8 mL/min. The black dashed line serves as a visual guide to 

indicate the linear charging behavior of an ideal capacitor. Voltage profiles start to 

deviate from ideal capacitor charging because of charge loss around 0.7 V and 150 s. We 

hypothesize that the charge loss is caused by parasitic reactions, such as the reduction of 

dissolved oxygen.  
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S-8: Spatiotemporal plots of salt concentrations predicted by the area-averaged 

model 

We present the spatiotemporal plots of salt concentrations inside a fteCDI cell predicted 

by the area-averaged model at flow rates of 0.22 mL/min, 2.5 mL/min and 12.8 mL/min. 

The Peclet-type numbers o^∗ are 1.3, 8.8 and 11 respectively. The cell is charged with 
constant current at 50 mA. The ordinance in the plots is charging time and the abscissa is 

the position along the 1D cell.  As mentioned in the main paper, the flow rate of 0.22 

mL/min is in dispersion-limited regime, and the flow rates of 2.5 and 12.8 mL/min are in 

the advection-limited regime. As shown in Figure S4, our model captures the non-

uniform charging of the electrodes and demonstrates the in situ salt removal dynamics 

inside a fteCDI cell. In the main paper, Figure 3(a) shows that the volume-averaged 

model predicts the leveling off of effluent concentrations at a time scale faster than the 

area-averaged model.  We attribute this difference to the effect of non-uniform charging 

of the electrode, which is only captured by the area-averaged model. 
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Figure S4. Spatiotemporal plots of simulated salt concentration in a fteCDI cell, with 

constant current charging at 50 mA and flow rates of (a) 0.22 mL/min (o^∗=1.3), (b) 
2.5 mL/min (o^∗ = 8.1) and (c) 12.8 mL/min (o^∗=11). These simulation results 
demonstrate the salt removal dynamics and inhomogeneous charging inside a fteCDI cell. 
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